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Nonlinear gyrokinetic equations are derived from a systematic Hamilto-
nian theory. The derivation employs Lie transforms and a noncanonical
perturbation theory first used by Littlejohn for the simpler problem of
asymptotically small gyroradius. For definiteness, we emphasize the limit
of electrostatic fluctuations in slab geometry; however, there is a straight-
forward generalization to arbitrary field geometry and electromagnetic per-
turbations. An energy invariant for the nonlinear system is derived, and
various of its limits are considered. The weak turbulence theory of the
equations is examined. In particular, the wave kinetic equation of Galeev
and Sagdeev is derived from an asystematic truncation of the equations,
implying that this equation fails to consider all gyrokinetic effects. The
equations are simplified for the case of small but finite gyroradius and put
in a form suitable for efficient computer simulation. Although it is possi-
ble to derive the Terry-Horton and Hasegawa-Mima equations as limiting
cases of our theory, several new nonlinear terms absent from conventional
theories appear and are discussed. The resulting theory is very similar in
content to the recent work of Lee. However, the systematic nature of our
derivation provides considerable insight into the structure and interpreta-
tion of the equations.



I. INTRODUCTION

It is generally believed that the anomalous transport observed in mag-
netized fusion plasmas is related to the existence of turbulent fluctuations of
frelquency much lower. than the ion gyrofrequency. However, the description of
such fluctuations involves complex nonlinear equations without simple analytic
solutions. Furthermore, since such equations often describe collective motions
on extremely disparate time scales, straightforward numerical methods are not
viable because of practical limitations on computer time and memory. There-
fore, in this paper we shall éonsider a powerful method for the derivation of
reduced, nonlinear equations appropriate specifically for the description of low
frequency fluctuations in a magnetized plasma, and which are in a form suitable

for efficient numerical analysis.

Our principal concern is with the so-called gyrokinetic equations, defined
by requiring that the characteristic frequency of the fluctuations be small com-
pared to the ion gyrofrequency, but that the average spatial scale of the fluc-
tuations perpendicular to the magnetic field, El, be of the same order as the .
average ion Larmor radius p; (k1p; ~ 1). For longer wavelengths, k1 p; < 1,
the equations reduce to the more familiar drift kinetic equations. Although
linear gyrokinetic theory is well-understood,!® nonlinear theories necessary to
describe possibly turbulent phenomena are still in a state of infancy. Recently,
Lee* obtained a nonlinear generalization of the linear gyrokinetic equations
for the Vlasov-Poisson system which have the desirable property of being in a
form suitable for efficient numerical analysis by means of the so-called particle

pushing technique. That is, his nonlinear gyrokinetic Vlasov equation can be

written as a total time derivative taken along a characteristic in phase space and




- conserves phase space volume along this characteristic; we call such equations
“phase space preserving.” However, by construction his equations are valid only
for small but finite Larmor radius for the nonlinear terms. Our principal contri-
bution in this paper is to provide equations valid for k, p; =~ 1 for the nonlinear
terms as well as the linear terms, while retaining the important phase space pre-
serving property. In earlier significant, pioneering work, Frieman and Chen?®-®
followed a perturbative approach to obtain fully gyrokinetic equations, but in
doing so they lost the phase space preserving property. They also retained only
the E X B nonlinearity, which may not be the only important term in certain
interesting regimes. Wong’ has derived a set of nonlinear gyrokinetic equations
which are phase space preserving. However, his formalism, which involves the
use of mixed variable generating functions and perturbative expansions of the
equations of motion, is algebraically involved and rather opaque, and his final

result is missing several terms (related to E X B drift motion).

In this paper we attempt to set nonlinear gyrokinetic theory on a firmer
and more transparent theoretical foundation through the use of covariant (non-
canonical) Hamiltonian techniques and Lie transformations, a methodology pio-
neered by Littlejohn®® for the problem of single particle drifts in a specified
(non-self-consistent) potential in the drift kinetic ordering (k1p; < 1). The
Hamiltonian method has many advantages. Aside from its elegance and sim-
plicity, the approach automatically ensures that the equations will be phase
space preserving, and permits a clearer understanding of the underlying dy-
namical structure (terms in the Vlasov equation can be immediately and easily
linked to gyro-center drifts and accelerations; constants of the motion and adi-

abatic invariants are conspicuous). The covariant structure of Hamilton’s equa-
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tiohs, long appreciated by mathematical physicists but only recently exploited
by plasma physicists, allows new freedom in the choice of coordinates and mo-
menta when one constructs the perturbation theory upon which the averaging
pr(;cedure depends. Lie transformations, which replace the transformations
based on mixed variable generating functions used in more conventional formu-
lations, greatly simplify the form and manipulation of the perturbation series,
especially at high order. We employ these powerful mathematical tools to aver-
age away the fast gyromotion time scale and so construct the nonlinear gyroki-
netic equations governing low frequency fluctuations in a magnetized plasma.
Unlike the earlier applications, the resulting equations are self-consistent—that
is, the gyrokinetic evolution equation for the distribution function of the gyro-
centers involves effective pot‘entials which are self-consistently determined by a
gyrokinetic transformation of Maxwell’s equations. In fact, the determination
of the self-consistent potentials introduces complexity absent from the non-self-
cohsistent problem. To isolate this complexity, and to be as pedagogical as
possible, we have chosen to describe here the case of straight constant magnetic
ﬁeid and electrostatic fluctuations (which still describes a wealth of nonlinear
physics). However, there is no conceptual difficulty with including electromag-

netic and curvature effects; the general theory will be presented elsewhere.

To reiterate, by employing noncanonical coordinates and a gyroaveraged
ion distribution function F; we maximize the simplicity of the gyrokinetic ion
Vlasov equation. Other averaging procedures leave the Vlasov equation in a
very complicated form because they either rely on cumbersome canonical co-
ordinates or they fail to renormalize the distribution function (see Appendix

A, for example). The distribution function which we use has intuitive physical
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significance. In fact, in the quasineutral approximation, the difference between
the gyroaveraged ion density N; (the velocity space moment of F;) and the
laboratory ion density n; will be shown to be equal to the contribution to the
density fluctuations due to the polarization drift of the ions. Since one effect
of the transformation to gyro-center coordinates is to remove the polarization
drift from the equations of motion,!® it is satisfying to see the effects of the

drift reappear in the Poisson equation.

The remainder of this paper is organized as follows. In Sec. II we use
Littlejohn’s technique of noncanonical variables, Darboux transformations, and
Lie transformations to construct a gyrokinetic Hamiltonian for a single particle
in a potential temporarily assumed to be given. In Sec. IIl we enforce self-
consistency between the particle motion and the potential and use the averag-
ing transformation constructed in Sec. II to derive the gyrokinetic equations for
the Vlasov-Poisson system. In Sec. IV we construct an energy invariant for the
system and discuss several limiting forms. We devote Sec. V to an exploration
of various limits of the equations. For EJ_P.' small we obtain what are basically
Lee’s equations, although there are differences between his equations and ours,
which we discuss. In the limit of negligible ion temperature (T; — 0) we obtain
fluid equations from which the Terry-Horton!! and Hasegawa-Mima'? equations
can be derived. In Sec. VI we find it instructive to consider briefly the weak
turbulence theory of our equations. In particular, we point out that the wave
kinetic equation of Galeev and Sagdeev!?® follows from a certain truncated set
of equations which is formally inconsistent with the gyrokinetic ordering. This
indicates that they failed to consider all gyrokinetic effects. We state our con-

clusions in Sec. VII. In Appendix A we rederive our gyrokinetic equations using



a more complicated recursive formalism, and we derive the relationship between
the distribution functions used in the two approaches. The recursive method
is perhaps more familiar to workers in drift kinetic theory,'* but has several
disédvantages. Along with its relative complexity compared to the Hamiltonian
approach, the resulting Vlasov equation is not phase space preserving until a
subtle renormalization of the distribution function is effected. In Appendices
B and C we quote several intemediate algebraic results, and in Appendix D we

sketch the weak turbulence calculation.

II. A SINGLE PARTICLE GYROKINETIC HAMILTONIAN

In all that follows we adopt the well-known “gyrokinetic ordering”:

e —
%2— = 0(6), kJ—Pavg = O(l)’
Pav -
LLS_ = 0(6), kllpavg = 0(6),
eq
% = O(E)’

where m is the particle’s mass, e is the signed charge (in this section we do
not commit ourselves to a particular species), Pavg = 7/Q,7 is a characteris-
tic particle speed, 2 = eB/c is the cyclotron frequency, L.q is an equilibrium
scale‘ length, @ and k are the characteristic frequency and wavenumber of the
perturbed electric field given by E = —V¢, and € is a small ordering param-
eter.l We define a Larmor radius involving a characteristic speed rather than
a temperature since there is at this point only one particle,t travelling through
externally imposed fields, and tempefature is a statistical concept useful only
for an ensemble of particles. The gyrokinetic ordering is motivated, in part,

by the nonlinear behavior of drift waves. It is consistent with experimental



observations, and agrees with simple theories of nonlinear saturation (taking
e¢/T. ~ 1/ky L.;). Furthermore, it allows for wave-particle resonance effects,
~ since both @ and E” enter at the same order. It is instructive to compare this
gyrokinetic ordering with the so-called drift kinetic ordering, which several of

us have discussed elsewhere.15:18

The Hamiltonian K for a nonrelativistic charged particle in an electrostatic

field is

2
K(x,p,t)= % (p - e_r%A(x)) + e%d)(x,t), (1)

in canonical coordinates (x, p), where x is the position, p is the conjugate mo-
mentum variable related to the velocity v by p = v + (e/emc)A, A is the
magnetic vector potential (which we take to be time-independent), and ¢ is the
time. This Hamiltonian is time-dependent, a property which tends to corhpli-
cate the averaging procedure. We can circumvent this problem by introducing
so-called “extended phase space” canonical coordinates!? (x, p,t, w), where now
t is a coordinate conjugate to w in an extended eight-dimensional phase space.

In these coordinates we write the Hamiltonian as

2
H(x,p,t,w) = %(p - —e—A(x)) —w+ 6%¢(x,t). (2)

Since w equals the particle energy along the particle’s trajectory through the
extended phase space (as can easily be seen by application of Hamilton's equa-
tions), the numerical value of the Hamiltonian is zero, and it is thus a constant

of the motion.

The motion generated by this Hamiltonian has a fast time scale component

describing the Larmor gyrations at the cyclotron frequency. Our goal is to



systematically average away these gyrations. To this end, the gyromotion must
be isolated. As Littlejohn has pointed out in a series of fundamental papers,®!®
it is most inconvenien_t to restrict oneself to canonical coordinates at this point,
since the canonical momentum contains both slow and fast time scale effects
which greatly complicate the perturbation procedure. Instead, we follow his
approach by introducing noncanonical coordinates (x, vy, v, 6,t, w), where § is

the gyrophase of the gyrating particle:
Ve
0 = tan~{(—).

Here x and y are arbitrary orthogonal unit vectors in the plane perpendicular

A

to B, and yy = v-band vy =|v X BI are the parallel and perpendicular
components of the velocity (b = B/|B|) (see Fig. 1). The fast motion now
arises implicitly through the coordinate 6; so if we remove the 6 dependence

from the equations of motion,we will have achieved our goal of finding equations

for the evolution on the slow time scale.

The fact that the coordinates are no longer canonical in no way vitiates
the Hamiltonian nature of the equations of motion. Hamiltonian theory can,
in fact, be couched in a coordinate-free form; such covariant formulations have

19,20 and we shall not attempt a detailed examination

been discussed extensively
of the subject. For our purposes it will be sufficient to state several of the main

results of this theory; interested readers are referred to the literature.

In generalized (not necessarily canonical) coordinates, z, Hamilton's equa-

tions take the form

% = {z’)H}’ ’ (3)



where H(z) is the Hamiltonian and we have introduced “Poisson bracket” no-

tation. The Poisson bracket of two phase functions f and g is defined by

{fvg =g"J'ag

Y} 0z’ (4a)

where J is an antisymmetric contravariant tensor called the Poisson tensor. This

tensor can be defined by its form in canonical coordinates z, = (x, p):

o -I
ums( ), (4b)
I o

where O and I are the 3 X 3 null and unit matrices. ASince J transforms con-
travariantly, it is possible to find its form in any set of coordinates Z connected

via a diffeomorphism to canonical coordinates:

WD) == 4(a)- 5 (5)

In our chosen coordinates (x,v1,v),0,t,w), the elements of J are given in
Appendix B. In these coordinates the Hamiltonian becomes

2
%l

2 )
H'(x,v1,v,0,t,w) = v?'L+ ?—w+e-r%¢(x,t). (6)

Although H’ is f-independent, & dependence, and hence a fast time scale,
is introduced into the equations of motion by the Poisson tensor. However, in
order to expedite an averaging procedure to remove the fast time scale, we want
all of the @ dependence in the Hamiltonian and none in the Poisson brackets.
We can remove all § dependence from the Poisson brackets by using a Darboux

transformation!® to a new set of “semi-canonical” coordinates
Z = (X,n,0,U,T,W).

(More general approaches using an action form?! could also be applied; but for

the present case of straight magnetic field and electrostatic fluctuations, our
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method is quite adequate, and perhaps more physical.) This transformation
is defined by the following prescription: given a coordinate (say ), find the
coordinate (call it p) which is canonically conjugate to it, and construct the
other variables of the system by requiring that they commute with 6 and u.
This decouples the fast scale from the slow scale to lowest order in ¢, allowing for
a more “natural” description of the motion as a fast gyration superimposed on
a slow drift both along the field lines (due to the near-constant parallel velocity)
and across them (due to the electrostatic perturbation). In mathematical terms,
we must solve the following set of coupled differential equations:

{0, n} =1,

{6,Z} =0 for all Z except p,

{n,Z} =0 for all Z except 6,
subject to given initial conditions; we take p = 0,X = x,U = y,T = ¢,
and W = w at v, = 0. We are guaranteed that these equations do, in fact,
have a solution as long as the phase space manifold is “symplectic”’—i.e., that
a closed nondegenerate two-form exists on the manifold.!® Since the inverse of
the Poisson tensor is just such a two-form, we can solve these equations. We
obtain

2
Vi
X=x—-p, U=y, T=t W=w, and r= 20 (7)

where p = v, 4/Q and & is a unit vector defined in Fig. 1 and Appendix
B. We see that X is the lowest order (in ¢) guiding center position, and p
is the lowest order adiabatic invariant;'® i.e., p is merely the first term in
an ’asymptotic series for the exact invariant, which we call Z and shall use

later. Elements of the Poisson tensor in Darboux-transformed coordinates are
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displayed in Appendix B. The Hamiltonian transforms to

»

H(Z)= pQ + %Uz —W+e%¢(x+p,t). (8)

Since 6 dependence now appears only in the perturbation Hamiltonian (the term
proportional to ¢), H is now in a form suitable for averaging. Although mixed
variable generating functions'? could be employed, we find that Lie transforma-
tions greatly simplify the algebra involved in the averaging procedure. Several
very good elucidations of the theory and application of Lie transforms may
be found in the literature;22:2% one particularly readable elementary account
is that of Littlejohn.?* The transformation equations from coordinates Z to

gyroaveraged coordinates Z are
Z =1z (9a)
the gyrokinetic Hamiltonian is therefore given by
H=71"'H, (9b)
since T is an area preserving (symplectic) near-ildentity transformation. The

transformation T is defined to be
T = exp(— f de L), (9c)

where

(e ]
L= ) 'L,

n=1

L, = {Gp, }.
The Gys are called the generating functions of the transfqrmation. Upon ex-
panding T, H, and H as power series in €, we find that
Ho = H,, (10a)
H, = H, + LyoH,, (10b)
Hy = Hy + LioH, + %(Lzo + L2, + 2Ly, )H,, (10c)
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where we have broken L,, up into a zeroth order part and a first order part:

Ly = Lpo + €Ly,

L 3Gy 8 0Gn 8 _VGa
T "50 ou  ou 00 ' Q
0 0Gny o 8Gn 0

"oU 98U T oW

Lyy =b:VGp—

Up to this point the transformation has been arbitrary. We now determine the
generating functions of the transformation by solving Egs. (10) subject to the
conditions that the new Hamiltonian H be #-independent and that the generat-
ing functions contain no #-independent parts (which would lead to secularities).
Thus, by absorbing all 8 dep'endence into the generating functions, we are able
to make H gyrophase-independent order by order. Furthermore, since this Lie
transform is area-preserving, the functional form of the Poisson tensor remains

unchanged under the transformation.!® The Hamiltonian becomes

HZ) =p0+_ U -W+ e—:ﬁ
ee? (8 ,~2 Ve . - 3

where

(27 )3

where 5 = (25/0)!/24(0). The generating functions G and G are also deter-

mined at this order; they are displayed in Appendix C.
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The quantity # is the true adiabatic invariant (correct to all orders in ¢
in our formulation): = Tp; the other barred quantities have similar inter-
pretations. By assuming that the series for T converges, we are ignoring the
possibility of stochasticity!® arising from resonant interactions between the gy-
romotion and other motions of the system. This stochasticity can often be
shown to be unimportant.1®25 The first order contribution ¢ to H is the po-
tential averaged over a Larmor orbit, familiar to workers in gyrokinetics. The
second order contributions to H are related to the change in the lowest order
invariant, v% /2Q, due to the electric field fluctuations, and to the change in
position of the guiding center due to the E X B drift. This can by seen by
performing a simple analysis of the unaveraged equations of motion, obtained

from Egs. (3), (8), and (B2):

do e 4

d—T Q+e—a—¢(X+p,T),
du e 0

ar = mag?X el
dX e V¢

T mpg XteT)Xb

Solving perturbatively, we find that

0o = OT, py,Xo are constant,

and
By = -e;z%&',
X, = -e;fﬁ(va X bT + Ynﬁ X b) = veT + X,
9, = em—;%($T+ g) =0T +6,.
Thus
% =X V? T Z:ﬁ % aa:(fo)’
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where qb = qb[Xo +veT + p(ﬁT), T and 1 = 0 + Q. Upon averaging this

equation over the fast time scale QT we find

By e e ohypndy, o (385, o 0%
€ 9 (,Vd . _- 8,2
_‘2m295;((ﬁxb'v¢)+6_u(¢ )),

which is the same as we would obtain using Eq. (3) with H.

IIl. THE GYROKINETIC VLASOV-POISSON SYSTEM

In this section we use the single particle gyrokinetic Hamiltonian to find
a Vlasov equation for the gyroaveraged ion distribution function F;, and we
enforce self-consistency by writing the Poisson equation in terms of F;. The
electrons are assumed to be drift kinetic and the appropriate Vlasov equation

is derived by taking the drift kinetic limit of the gyrokinetic Hamiltonian.

In canonical coordinates the Vlasov and Poisson equations are
{fl'(x’ P, t),Hi(x’p, t,l.U)} =0, (12)

VZg(x,t) = —4re [/ fi(x',p',t)d(x — x')d®2 — n.|, (13)

where n, is the electron density, f; is the ion distribution function, and H; is
the ion Hamiltonian. We have inserted the delta function in Eq. (13) in order
to expedite the coordinate transformations in the six-dimensional phase space
(x,p). We need not integrate over the full extended phase space because ¢t is
never changed during the transformations and the integrand is not a function
of w. Defining a distribution function g; in terms of the Darboux transformed

coordinates,

gl"x, U, U; 0; T) = fl'(x) P, t)’
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Egs. (12) and (13) become
{giaHl'} = 0, (14)
V2p = —4rme [/ gi(Z)6(X —x+ p)d®Z — n,|, (15)
where d®Z = ||0z/8Z||d* X dpdUdf. We now apply the averaging transforma-

tion T~' to Eq. (14). Since T~! is area preserving, it commutes with the

Poisson brackets (the form of the Poisson tensor remains unchanged):
T g Hi} =0={T""g;, TT'H,}
= {Fi, Hi}, - (16)
where we have defined F; = T~ 'g; and have used Eq. (9b).

We may now average Eq. (16) over § to obtain equations for the average

part, F;, and the fluctuating part, F;, of Fy:

{Ffaﬁi} =0a {Fiaﬁi}'= 0.
Since we are not interested in F';, and since F; appears nowhere in the equation
for F';, we can set I'; = 0 to obtain the gyrokinetic Vlasov equation:
{Fi,H;} =0, (17)

where F; = (T !g;) and T~ 'g; = (T g;). Actually, setting F'; = 0 is
equivalent, by definition of Fj, to choosing a particular set of initial conditions
for f;. Since choice of a particular gyrophase distribution at ¢ = 0 has negligible

effect on the long-time evolution of the system, we are justified in doing this.

By virtue of the relation between g; and F; given above, we can write the

Poisson equation as

Vip(x,t) = —4re [/ [TFi(Z)] 6(X — x + P)d*Z — n.| . (18)
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This is the gyrokinetic Poisson equation. The quasineutrality condition is ob-

tained by setting the right hand side of Eq. (18) equal to zero.

‘So far in this section we have made no approximations, and have introduced
no ordering parameters. We need only find the form of T and H using Lie
transformations to obtain gyrokinetic equations good to any order in € that
we wish. Of course, this again assumes that the time scales are sufficiently
disparate so as to render negligible the stochastic regions around resonances.

To O(e3) the Vlasov and Poisson equations are

oF; —
ﬁHUb—em' thsz) VF—e—-b vw—v— (€!),  (19a)
where
— " ¢e a ,~2 Vo . =~
b= o (2 + (F b X T, (19b)
and
VZ¢( )——4#6[/(F;+e ° (¢6F ?;b b X VF)
e 9 _ 0 2 VO o oo Ve
+grr (b — @) - (B X V) + 2 b X VAl
~29%F. —
+¢2‘?9;;')+0( ))6(X—x+p)d°Z -1/, (20)

where VF = 8F[6X, VF = 8F/6x , p and p are now specifically defined
in terms of the ions, § = (2E/0Q;)/%, m; is the ion mass, and Q; is the ion

gyrofrequency.

Although there are O(€*) corrections to Eq. (192a), we are guaranteed that it
will be phase space preserving by the Hamiltonian approach. A word of caution
in interpreting the order of the terms of Eq. (19a): taking |[VF| = O(e) has

allowed us to divide out a factor of € from the equation. This must be taken
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into account when determining what terms may be kept at any particular order.

Thus, to O(e®) we must keep terms like b - V3(6F;)/8U.

The electron drift kinetic equation can be easily derived by taking the drift
P kinetic limit of the gyrokine‘tic Vlasov equation. Since the electron polarization
drift is much smaller than that of the ions, we can neglect its effects in the
gyrokinetic Poisson equation (see Sec. V) and use the simplest possible equations

to govern the drift kinetic electron motion:

af .
# + (v”b +

" € » Ofe
vV —b:Vo— =10
VéXb): Vit b ¢au,, , (21)

€
m.(Q,

where (2, is the (signed) electron gyrofrequency,m, is the electron mass, and
where n, = [ f.d®v in the gyrokinetic Poisson equation. This equation, to-
gether with Eqgs. (19) and (20), constitute a closed set of equations describing
low frequency electrostatic plasma fluctuations. In the next section we will ex-

amine the energy conservation properties of this system.

Although we have accomplished our goal of removing the fast time scale

from the equations of motion, it is not necessarily true that the equations, when
used self-consistently, generate solutions with no high frgquency component. We
may be sure that fluctuations such as the ion or electron Bernstein modes, which
depend on the cyclotron resonance, will not appear, but other high frequency
modes (such as plasma oscillations) are not ruled out a priori. Since a thorough
treatment of the normal modes of the system is outside the scope of this paper,
which is primarily concerned with the form of the nonlinear interactions, we will
only briefly touch upon this interesting subject. By linearizing Eqs. (19) and (2.0),
it is a straightforward excercise to construct the linear gyrokinetic dispersion

relation for a shearless slab with a density gradient. Assuming that the electron
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and ion background distributions are Maxwellian, we find two modes: the usual
drift-ion-acoustic mode, and a ﬁnite—k" variant of the convective cell which turns
into an electron plasma oscillation in the limit of small k;. Only the latter
mode exhibits possible high frequency behavior, and so it is to this mode that
we devote our attention. In the high frequency limit (w >> kjvs, kjjve, where v;
and v, are the thermal velocities), the dispersion relation for the real part of

this mode can be written as

k2y2
W? — 1%

"~ k2Api+kZp?

in the limit of small k, p;, where Ap 2 = (47e*ng)/Te, no is the background
density, p? = T, /(m;Q;), and T, is the electron temperature. Thus, as long as
kip, > k\p. and kj /kL < (m./m;)'/? there are no high frequency (w > )
roots. We may therefore use the full Poisson equation rather than the quasineu-
tral approximation with no fear of the equations generating high frequency
noise. (Although quasineutrality is often adequate, it is sometimes not uni-
formly satisfactory in inhomogeneous systems.) However, if the numerical
scheme being used is such that there is no control over the size of k,, it is

important to be on guard against this possibility.

IV. ENERGY CONSERVATION

The Hamiltonian nature of the system and the elegance of the Lie transform
approach allow us to find simple general expressions for the conservation laws
of the gyrokinetic system. The method we employ is applicable to all the
conservation laws; as an example of the general technique we consider energy

conservation. There are several ways to attack this problem. One is to seek
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a conserved moment of the gyrokinetic equation of motion, where the moment
is taken over all phase space coordinates but time and energy. However, there
exists no general procedure which dictates the appropriate moment. Therefore,
we adopt an alternative procedure in which we begin with the conservation law
in laboratory coordinates, then transform this law into the gyrokinetic variables.
The integrands appearing in the moment equations of this section are sometimes
written in terms of barred (averaged) variables, and sometimes in terms of the
unbarred variables; it really makes no difference since they appear as dummy
variables in the integrations and it should be clear froin the context which set
is being used in any particular equation. The well-known energy constant of

the Vlasov-Poisson system is:

',2 . 2 E2
e=/”“’ f,-d°z+/m ’ fed°z+/%d3z. (22)

2 2
Since we employ the simplest possible electron drift: kinetic equation, v, is a
constant of the electron motion and only the parallel electron kinetic energy
plays a role in the energy conservation of the system. Using the averaging

transformation T it is not difficult to write the ion kinetic energy in terms of

F;:

iv? U?
K,-s/”‘2" f.-d“z=/m,-(pﬂ.-+—2-)TF.-d°Z.

This can be couched in a more useful form by means of the following “integra-

tion by parts” theorem:
/ngd“z = /fT_lgdcz for all f, g independent of w.

Applying this to the expression for K yields the gyrokinetic energy conservation

law:
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= /F(Z)T Ymi(uQ; +—)d°Z+/fe mev” d®z /l d®z = constant.

(23)

Of course, one never deals with the exact gyrokinetic system, but rather .
with some asymptotié approximation to it, worked out to some order in €. The
averaging transformation can then be equnded out to obtain an expression for
the energy as accurate as needed for any particular application. In fact, in at
least two cases Eq. (23) provides exact invariants for approximate gyrokinetic
systems. By dropping the terms which are quadratic in ¢ in the Poisson equation

Eq. (20), we obtain

€ ~6F,' V‘i’ ~ = — _ —
m,-Q,-(¢ 3 + o -b X VF)|6(X - x + p)d®Z —n,

Vi(x,t) = —4me [/[F,- + €
(24)
This equation, along with the gyrokinetic ion Vlasov equation (19) and the

electron drift kinetic equation (21), form a system with the following exact

energy invariant:

3 U? mev? |E|? 4
'a—t(/mi(ﬂﬂi+—2—)F;d°Z+/ 5 fed°z+/8—1rd z

2 V‘P .
2m a a” _T -b X V¢))F; d°Z) (25)

This formula can easily be verified by taking the kinetic energy moments of Eqs.
(19) and (21), subtracting them and substituting for the ion density using Eq.
(24). The system can be further simplified while preserving energy conservation
by dropping the nonlinear terms in ¢ in Eq. (19b) and by linearizing the Poisson
equation. The gyrokinetic Vlasov and Poisson equations are then

6F,- —— € = ~ = e » —-6F,-
—_ Ub - * 3 * = 0, 26
aT + ( m;Q; : m; oU ( )
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and

edc

T, ™

(kz)\p?-f-l - Fo(b) + lrl(b) - Fo(b)]ik.l_ *Viln nOP?)
= / Jo(k_‘_p)F,'k21rQ,'dﬂdU — Nek (27)

where, for the purposes of computation, we have assumed that the background
distribution is Maxwellian in g with temperature 7; and linearly varying den-
sity ng, I'n(b) = I,(b)exp(—b), I is a modified Bessel function of order n ,
Ap7? = (4me?no)/T;, p? = Ti/miQ2, b = k% p?, and we have Fourier trans-
formed the Poisson equation. The term in Eq. (27)‘ proportional to sk, is
neglected by most authors. These equations describe drift waves in the linear

stage of growth, and they have the following exact energy invariant:

] U? mev? |E|? ,
a(/m,(uﬂ,+T]F;d°Z+/ 5 f6d°z+/¥d z

+ o [ R -rolel) =0 (29

The gyroaveraged ion and electron kinetic energies and the electrostatic po-
tential energy are apparent in all of the energy invariants presented. The last
term in the invariants represents the perpendicular “sloshing” energy of the

ions. This can be most easily seen by comparing the invariant for the linearized

system with the expression for the energy of an electrostatic wave:2®
4 E?
£ = ——(0uDr)-kE,
ank( kDn) gy

where Q) is the frequency of the mode, and D, is the Hermitian part of the
linear dielectric [see, for instance, Eq. (D2b)]. Electrostatic fluctuations cause
the ions to oscillate as the potential wells pass by; the energy associated with

this sloshing motion is equal to the extra term in Eq. (28). The electrons do

| I
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not contribute since their polarization drift is negligible compared to that of

the ions.

. Although the approximate gyrokinetic systems presented in this section all B
conserve energy exactly, they neglect terms which are quadratic in ¢ in the
Poisson equation. These terms are of the same order as terms which we kept in
Eq. (24), and thus may be important to the nonlinear evolution of the system. It
is possible to retain these quadratic terms and improve the energy conservation
by adding in the next order [O(¢*)] contributions to the Hamiltonian from which
the gyrokinetic Vlasov equation is generated. These O(¢3) terms balance the
quadratic terms in Eq. (20); however, energy is no longer exactly conserved.
As we will see, these O(¢3) terms play no role in the perturbation and weak
turbulence theory of the next sectioﬁs, so their importance is questionable.
However, the O(¢?) terms in the Vlasov and Poisson equations (19) and (20) do
enter into the weak turbulence theory. Although it remains to be seen which
set, Eqs. (19) and (20), or Eqs. (19) and (24), best approximates the actual
dyliamics, on the preliminary evidence of numerical simulations involving the
small k3 p limit of the latter set, we feel that the latter set is adequate for

numerical work, and captures the dominant physics.

V. LIMITING FORMS

We shall now examine two limiting forms of Eqgs. (19) and (20). By taking
k1 p small, we obtain equations similar to those of Lee:*

3F,' —_— e
— + (Ub —
oT ( fmiﬂi

Tl o L. T e » =1 0F; 3
«VF;—e—b V¢ — = O(¢%), 29
V¢’ X b): VF; fm,-b Y 30 (€°) (29)
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where
' =¢— (Vui’) + [O(kLp)!],

and

2
Vig+ —E—(N;Vigp+ V. ¢ ViN;)+ 4xe(N; —n,)
nokDg

= O(€*) + O[(krp;)*], (30)
where

N; = / 76X -x)F;, N;= / 2r0;dﬁdﬁ£k—

(2r)° exp(ik « x)Jo (kL P)Fi.-

There are two differences between Lee’s equations and Eqgs. (28) and (30).
The nonlinear contribution to ' derived by Lee involves p instead of p;. This
is traceable to an inconsistent renormalization of the distribution function (see
Appendix A), a subtle issue. However, the difference is unimportant as long as
the equilibrium distribution function is Maxwellian in p. Furthermore, Lee’s
Poisson equation overlooks the V; ¢+ V N; term, The addition of this term is
required for energy conservation, and also allows us to write the quasineutrality
condition as

~

Ni—ne=—-—23V, «(N;V.9). (31)

Thus, in the long-wavelength limit, the difference between the gyroaveraged
density N; and the laboratory ion density n; is the right-hand side of Eq. (31),
which is the lowest order contribution to the density fluctuations provided by
the polarization drift. It is also interesting to note the emergence in Eq. (31) of
a term proportlonal to §N;V2 ¢, which Lee also retains in his Poisson equation,
and which seems to have a large effect on the saturated state of drift waves in

certain cases. We call this term the “nonlinear polarization density” term. This
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is not the same as the “nonlinear polarization drift” term discussed by many
authors, proportional to E X B« VE, , which gives rise to the mode coupling
term of the Hasegawanima equation. The nonlinear polarization density term

is a higher order effect that is not contained in the Hasegawa-Mima equation.

Another enlightening limiting form of Eqs. (19) and (20) is obtained by
taking the perpendicular ion temperature to zero, i.e., g — 0. In this case one
can take velocity-space moments of the resulting Vlasov equation to obtain a

hierarchy of fluid equations, the first two of which are:

ON;

_6T_V¢f Xb-VN;+b-VJ;=0(), (32
8J; . . -
5 = V¥s X bV +b.V({U)i+P)+b-Vy,N;=0(),  (33)
where

l,bf =¢— ;(V_L¢)2, Ji = /UF;21I'Q,'dﬂdU,
vy= % P, = / (U = (U)2Fi2n0dpdU,

and for the remainder of this section it is convenient to normalize distances to

Pe = (Te/m,-ﬂf)l/z, times to Q,-_l, and e¢ to T,. The Poisson equation becomes

no(*—’ie)zv% +Ni—np + Vo (N:V18)+ Nil(VLV.L 6P — (V3 ] = O(),

(34)
where the norm of the tensor V1 V, ¢ appears. These equations are good for
kyip, = O(1) andvk"p, = O(¢). It is instructive to take the limit kyp, — 0 and
Ape/p, — 0. In this case an equation for the time development of the potential

can be derived which contains all terms necessary to perform a consistent weak

turbulence analysis on the fluid system. Taking the time derivative of the
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quasineutrality condition obtained from Eq. (34) and substituting for dN;/dt

yields

on,
ot

+ N.-a[(VJ_VUﬁ)” ~(V1¢)*] = O(¢).

d¢

V¢, X b-VN; - 5

+ V[V, X b:VN;V, ¢+ N,V —

Applying the quasineutrality condition once again then implies that

on,

ot

-Vy, X b V(ne —Vi[(ne—noVig)Vid|l — no|(VLVL) — (Vﬁ_¢)2])

—_vl.(vzp, X b+ V(n, —noV2@)V.id+ (n.—noV2 ¢)VL%?)

~ n o [(VL VL9 — (V3] = O(et), - (35)

where np is the background density. Taking the electron response to be of the
general form dn.y = no(1+iay )(edy /Te), where ay represents the nonadiabatic
electron response, and keeping only the lowest order terms, we obtain the Terry-

Horton equation:

. ) .
(1+sax + kz}% = — W, )
dsk’dsk"
/ kl x kH b¢k'¢k”

x k"% - k’i + i{ager — agr)] 8k —K' = K"),  (36)

where w, = —k X b-Vlogne. Taking ay to zero leads to the Hasegawa-Mima

equation.
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VI. WEAK TURBULENCE THEORY

In this section we briefly consider aspects of the weak turbulence theory
of the gyrokinetic system. We do not mean to imply that such a theory is
adequate; indeed, for.drift fluctuations a strong turbulence calculation is re-
quired, at least for certain wavenumbers. However, many structural features
of a complete strong turbulence calculation are already present in the simpler
weak turbulence limit, and we will consider that limit in order to better un-
derstand the power of the gyrokinetic approach and the various gyrokinetic
nonlinearities. In particular,'we wish to understand how our gyrokinetic for-
malism is related to the well-known discussion of Galeev and Sagdeev of a weak
turbulence theory appropriate for drift waves. Those authors begin with the
complete magnetized Vlasov equation, and therefore encounter significant dif-
ficulties in systematically performing the required integrations along perturbed
trajectories. The gyrokinetic description is much simpler and “cleaner” In
fact, we show in Appendix D that the wave kinetic equation corresponding to

the following truncated set of equations,

oF o
T my);

Vé X b-VF; =0, (37)

and

— / §Fixc Jo(kLp)27QdpdU + {r[1 — To(b)] + 1}5}‘% (38)

where 1 = T, /T;, is the same as the equations of Galeev and Sagdeev. There
are several typographical errors in Ref. 13.

Equations (37) and (38) may be obtained from Egs. (19) and (20) by lin-
earizing ¢, applying the quasineutrality condition to the linearized gyrokinetic

Poisson equation, taking the electrons to be adiabatic and taking k; — 0, and
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again assuming that the background distribution function is Maxwellian in p.
The details of the calculation, presented in Appendix D, are similar to those of
Kadomtsev.2” We solve perturbatively for the potential, assuming that the tur-
bulence is almost delta-correlated in frequency around the zeroes of the linear
dispersion relation, and that the Fourier amplitudes of the turbulent spectrum
are stochastic functions with near-Gaussian statistical properties, which allows
us to drop the fourth order cumulants appearing in the equation. We repeat
that this calculation is by no means original to this paper and in-itself is rather
uninteresting; however, it is important to note that it'is based on a truncated
set of equations. Only the nonlinear E X B drift appears in the equations upon
which this result depends; many other gyrokinetic effects have been neglected,
including the nonlinear polarization drift term, V < (§N;V¢), appearing in vari-
ous forms in Eqgs. (20), (24), (30), and (34). Although the E X B nonlinearity is
the largest nonlinear term, it is not necessarily a."good approximation to leave
out the higher order drifts. Although they are §mall, they are correlated to
the lower order fluctuations in such a way that their effect on the nonlinear
mode coupling and growth rate is of the same order as that of the E X B drift.
Examination of the gyrokinetic equations leads to the conclusion that terms of
order ¢* in both the Vlasov and Poisson equations are required for a consistent
weak turbulence analysis. Thus, Eqs. (19) and (20) contain all terms necessary;
however, this calculation is rather involved and space i)recludes a discussion
here. We reiterate that the discussion of the present section is primarily peda-
gogical: since weak turbulence theory does contain many of the salient aspects
of other renormalized theories, it provides several instructive insights into the

structure of the nonlinear equations.
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VII. CONCLUSIONS

Through the use of noncanonical Hamiltonian techniques and Lie trans-
forms, we have been able to derive fully gyrokinetic, phase space preserving
nonlinear equations gdverning self-consistent low frequency electrostatic plasma
fluctuations in a straight, constant magnetic field. Energy conservation for the

nonlinear system was discussed, as was the physics of the nonlinear drifts.

By linearizing both the gyrokinetic potential Eq. (19b), and the gyrokinetic
Poisson equation (20), equations may be obtained which are equivalent to the
equations of Frieman and Cﬁen. Our gyrokinetic equations also reduce to the
familiar Terry-Horton and Hasegawa-Mima equations in the limit of negligible
ion temperature, and to equations similar to those of Lee in the small k, p limit.
They are similar to the equations of Wong, but contain several terms missing
from his gyrokinetic potential and his renormalized gyrokinetic distribution
function. It is interesting to note, however, that his equations still conserve
energy [neglecting the O(¢?) terms in his Poisson equation] even though they
are not complete. The weak turbulence theory of the equations was briefly
investigated and we found that the theory of Galeev and Sagdeev does not in-
clude all relevant gyrokinetic effects. In any case, it is clear that the gyrokinetic
approach affords a more expeditious route to the derivation of nonlinear statis-
tical descriptions (for either weak or strong fluctuations) than do approaches

based on the full Vlasov equation.

From a practical as well as a theoretical point of view, we believe that
the most important feature of this work is that it provides self-consistent gy-
rokinetic equations in phase space preserving form. This allows for particu-

larly efficient solution of the fully nonlinear equations using existing numerical
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techniques. Since it is also important for the equations to exhibit energy con-
servation, especially in numerical work, we feel that Eqs. (19) and (24) are
appropriate equations to use for a full numerical study of low frequency plasma
fluctuations. Although these equations may have defects (cf. Sec. IV), they do
contain all the physics of previous formulations, as well as new effects such as
the nonlinear polarization density term. Furthermore, preliminary numerical
results indicate good agreement with simulations involving the full unaveraged
Vlasov equation. The effects of arbitrary magnetic fields and electromagnetic
fluctuations can be incorporated into the formalism in a relatively straightfor-
ward manner. Such work is in progress, and has already yielded useful insights.
Although much work remains to be done, we believe that these tools lay the
proper foundation for a detailed analysis, both analytical and numerical, of

nonlinear low frequency fluctuations in magnetized plasma.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Liu Chen for his helpful advice.

This work was supported by the U. S. Department of Energy under contract
DE-AC02-76-CHO-3073.




- 80 -

APPENDIX A: THE RECURSIVE APPROACH

In this appendix we present an alternative derivation of the gyrokinetic
equations, using the so-called recursive method. Although the approach is quite:
cumbersome, it provides a useful comparison to the more powerful techniques
used in the main body of the text, and is probabably more familiar to workers in
drift kinetic and gyrokinetic theory. Here, we break the Darboux-transformed
distribution function gi(Z) into an averaged part, g;, and a fluctuating part,
g;. We then average the equation of motion, Eq. (14), to obtain two coupled

equations for g; and g,

({g; + flhﬁi}) =0, (Ala)
{g;+ 0, H:} - ({7 + 9, Hi}) = 0. (Alb)

Since H; is 0-dependent, these equations no longer decouple as they did when
we Lie transformed to the gyroaveraged Hamiltonian H;; now both equations

involve g, and g;.

~ Our strategy will be to solve for g; perturbatively as a functional of g;, and
use this relation to obtain the evolution equation for g;. Solving Eq. (Alb) for

@;(5,-) yields g; = g;, + g;,, Where

. _ e -0g;
9i _miﬂi¢aﬂ,
3: =_e_{_u@£&,)+vi>xf,.vg.+g.f,.v&>a_§f_
12 m‘Q? a” 1 1 av“
e 07; 8¢~ 18%g; -2 -2 }

and L = 9/3t+[vyb—(e/m:)V X B/Q;]-V—(e/m;)B-Vza/av“. Substituting

this expression into Eq. (Ala) yields the following rather messy equation, which
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is clearly not phase space preserving as it stands:

= e? ~2 . o 95 ' -2, 9%g;
e ~ . . e 8 -00;, s
(ST X b Ve + =3 — o)

It is certainly not obvious that this equation can be put in phase space preserv-

ing form, but nevertheless if we substitute the relation

g, =F + (6) + (= b X V)5 (A2)

62 ad 6F,
2

( vé . - aF,-)
2m;202 \ 0" dp ’
we find, after very lengthy algebra, that we are led again to Eq. (19). We can

complete the calculation by writing the Poisson equation in terms of g;,
V2¢ = —4rxe [/(ﬁ, + f],{ﬁ,})dGZ - ne] y

where the braces indicate functional dependence: Then substitution of F; for
g; using Eq. (A2) reproduces Eq. (20). Of course, Eq. (A2) is exactly what we

would get by solving the coupled equations
F;={(T7'¢;) and 0= T71g; — (T 'gs),

which we derived in Sec. III using Hamiltonian techniques. Equation (A2) would
not have been obvious if we had not already been aware of the answer. The
power of the Hamiltonian technique lies in the way that it automatically renor-

malizes g;, keeping the Vlasov equation in a simple phase space preserving form.
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APPENDIX B: POISSON BRACKETS

In the coordinates (x, v, ,0, v, ¢, w) all Poisson brackets except the follow-

ing vanish:
{x,v.} =¢ {x,o)} =b, {x,0} = —vi, (Bla,b,c)
i
Q0
{6,v } = —, {w,t} =1, (Bld,e)
vy
where & = Xcos@ — ysinf,é = —xsin @ — y cos 0.

In Darboux transformed coordinates Z = (X, u,0,U,T,W), all Poisson

brackets except the following vanish:

xx)=2XL  xu) =5 (B2a,b)

{u,0} =1, {(W,T} =1. (B2¢,d)

APPENDIX C: GENERATING FUNCTIONS

The following functions generate the averaging transformation:

G, _  ep
80 mQ’
G, ¢ (2~a$ 9 -2 -2 d ~0d
a6 m2Q?

+2ﬂ(%+U6-V&>)). (C1b)
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APPENDIX D: DETAILS OF THE WEAK TURBULENCE CAL-
CULATION

The object of this section is to obtain an equation for the evolution of the
electric field intensity on the nonlinear saturation time scale, assuming that it
is almost delta-correlated and that it is small. The latter assumption allows us

to solve Eqgs. (37) and (38) recursively for ¢; we find through O(¢*) that

~ dik' T N )

(2r)t
~ ot dik'd* k"
+ F(k, k ,k )¢E”¢E,—E”¢E—E,(2—8 = 0, (Dl)
r)
where .
- - ik' X beik
D(k,k ) = —Tno,;_;: /FMJo(k_Lp)Jo(kap)%rQ,dde
+ {r{L = To(b)] + 1}8(k — K')(2x)*,

L ik’ X b ik W '
E[k, k ,k ) = _TU FMJo(k_Lp)Jo(klp)Jo(klP)2ﬂ'Q,dﬂdU,

~ ~f o~ ! - o ! N S TR )
F(k,k',k")E k X.b kk X'b k Wy

tw tw' w'!

x / FraJo(KLo)o(lk L — K, [0)Jo([KL = ', |0)Jo (kL p)2x Qs dndU.

We have normalized e¢ to T, w to Q;, k~! to p,, and k is here defined to be the
four-vector (—w, k) with k the three-vector wavenumber, F is a Maxwellian
distribution in g, w, = w,(k'), and w, = —[k X b - Vlog(ne)| is the drift
frequency. Multiplying (D1) by ¢, and expanding ¢; perturbatively (¢ = ¢, +
&, + ..., where @, is the linear potential, exactly delta-correlated around the

zeros of the linear dispersion relation, ¢, represents the first order nonlinear
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line broadening, etc.}, we find that -

l(3(¢¢),; oD;  dD; 5(¢¢);)
2° Ox ok Ox ok
_ /(E(ic —k k,—k)E(k,k k—k)

D;_y

D; (¢¢); +

d*k’'

Pl k= K, F) + F(k b= B (0903 0905 oy

where

Di(x) = —(w,fw)lo + (1 =Tp)+1

turbulence:

(D2a)

(D2b)

is the linear dielectric function for adiabatic electrons and kj — 0 (in the
quasineutral limit), E(a, b, ¢c) = E(a, b, ¢) + E(a, ¢, b), and x = (7, R) are the co-

~ ordinates representing the slow time and space scales of the macroscopic plasma
parameters. We have used the *“Random Phase Approximation, throwing away

i the fourth order cumulants to write the four point correlation functions (ob-
i tained by expanding ¢) in terms of the wave intensities, (¢¢);. Assuming that
these intensities are fairly sharply peaked around the zeros of D has allowed

‘ us to use a W.K.B. approximation on the term D(l~c,l~c')(¢¢),~c' of Eq. (D1) by
Fourier transforming over the fast fluctuations in space and time and allowing
D; to depend parametrically on the slow scales. This sharp peaking allows us
to perform the frequency integrations as well; substituting for D; and writing
the equation in terms of the wave action Ny = (¢¢)x3D; /0w|u—q,, we ob-

tain the well-known Galeev and Sagdeev wave kinetic equation for drift wave

SN S
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ONy 0 0 O
’ k

e X B ([ Fuc s ik o it

FuJo(kLp)Jo (K, p)Jo( kL — '\ |p)27Q:dudU]?
S Fmdo(kLp) O(I‘:ir])(_:q]:i Ip.)J_ |p)2x Qs dpdU] )2#5(91:—91:')(4’4’)1:’

/’dak’d"'k” k X K - B)? agn(Im(D(_m.k)))(wi Wy
Ok e Oy

2
X [ / Fu Jo(kop)Jo (K p)Jo(K| p)27Q2idpdU ]
X (G ($8)urb(k — k' — k")8(Qy — Oy — Qe )(27)*, (D3)

where v, = 0(ReD;)/0w|u=q, is the group velocity, Qy is the real linear

frequency, satisfying Re D, = 0, and 1, is the well-known linear growth rate.
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Figure Captions

FIG. 1. Geometric representation of gyromotion.

rotate with the particle.

The vectors p, &, and ¢
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